1.diketahui f(x) = 2x^2 + x - 3 dan g(x) = x - 2. Komposisi fungsi (f o g) (x) = 2.nilai lim x➡tak terhingga 5x^2 - x - 4 / x - 6 = 3.Nilai lim x ➡ tak terhingg
Matematika
yeol61
Pertanyaan
1.diketahui f(x) = 2x^2 + x - 3 dan g(x) = x - 2. Komposisi fungsi (f o g) (x) =
2.nilai lim x➡tak terhingga 5x^2 - x - 4 / x - 6 =
3.Nilai lim x ➡ tak terhingga 4x^3 - 2x + 3 / x^3 - 6x^2 - 19x =
2.nilai lim x➡tak terhingga 5x^2 - x - 4 / x - 6 =
3.Nilai lim x ➡ tak terhingga 4x^3 - 2x + 3 / x^3 - 6x^2 - 19x =
1 Jawaban
-
1. Jawaban arsetpopeye
1) (f o g)(x) = f(g(x))
= f(x - 2)
= 2(x - 2)^2 + (x - 2) - 3
= 2(x^2 - 4x + 4) + x - 5
= 2x^2 - 8x + 8 + x - 5
= 2x^2 - 7x + 3
2) Lim (5x^2 - x - 4)/(x - 6) . (1/x^2)/(1/x^2)
= Lim (5x^2/x^2 - x/x^2 - 4/x^2) / (x/x^2 - 6/x^2)
= Lim (5 - 1/x - 4/x^2) / (1/x - 6/x^2)
= (5 - 0 - 0)/(0 - 0)
= 5/0
= ~
3) Lim (4x^3 - 2x + 3)/(x^3 - 6x^2 - 19x) . (1/x^3)/(1/x^3)
= Lim (4x^3/x^3 - 2x/x^3 + 3/x^3) / (x^3/x^3 - 6x^2/x^3 - 19x/x^3)
= Lim (4 - 2/x^2 + 3/x^3) / (1 - 6/x - 19/x^2)
= (4 - 0 + 0) / (1 - 0 - 0)
= 4/1
= 4